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Abstract—Autonomous robot navigation in unstructured out-
door environments is a challenging area of active research. The
navigation task requires identifying safe, traversable paths which
allow the robot to progress toward a goal while avoiding obstacles.
One approach is to apply Machine Learning techniques that
accomplish near to far learning by augmenting near-field Stereo
to identify safe terrain and obstacles in the far field. Some
mechanism for applying past learned experience to the active
navigation task is crucial for effective far-field classification. We
introduce a new method for long-term learning in the robot
navigation task by selecting a subset of previously learned linear

binary classifiers. We then combine their output to produce
a final classification for a new image. Techniques for efficient
selection of models, as well as the combination of their output,
are addressed. We evaluate the performance of our technique
on three fully labeled datasets, and show that our technique
outperforms several baseline techniques that do not leverage past
experience.

I. INTRODUCTION

Autonomous robot navigation in unstructured outdoor en-

vironments is a challenging area of active research. The

navigation task requires identifying safe, traversable paths

which allow the robot to progress toward a goal while avoiding

obstacles. Stereo is an effective tool in the near field, but

for smooth long-range trajectory planning or fast driving we

need an approach to understand far field terrain as well.

One approach to the problem is to apply Machine Learning

techniques that accomplish near to far learning by augmenting

near-field stereo readings with learned classifications of the

appearance of safe terrain and obstacles in the far field.

Approaches which use image appearance or color to seg-

ment regions of interest for navigation have existed since the

1980s [1], [2], [3], [4], [5]. More recently programs such as

DARPA’s Learning Applied to Ground Robots (LAGR) have

inspired work on using Machine Learning approaches to ex-

ploit image color and texture for classification of “traversable

terrain” and obstacles in the far field [6], [7], [8], [9]. Although

a number of the DARPA LAGR teams use Machine Learning

techniques with color-based image features to build terrain

models [10], [11], [12], none of them learn over time with

multiple models, central to the proposed technique. The use

of model ensembles has also been previously described in the
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Fig. 1. Typical outdoor navigation scenario (left). Terrain classification on
same image using proposed technique with 20 models (right).

literature [13], [14], [15], though not in the context of this

particular problem.

Our previous work [16] frames this problem as a supervised

Machine Learning problem. For each image acquired from

the robot’s vision system, stereo information is used to label

regions of the image in the near field as traversable or non-

traversable. That labeling information is then used to train a

linear binary classifier which in turn is used to evaluate the

remaining unlabeled pixels in the image. One problem with

this technique is that with a single-model-per-image approach,

there is no way to identify obstacles in the far field unless there

are examples of those obstacles in the near field. For example,

with this baseline approach, in order to plan around a patch of

dense shrubbery seen in the far field, there must be examples

of that foliage visible in the near field.

In this paper we describe a framework for long-term learn-

ing using multiple models built over time. Instead of building

one model per image and then discarding it, our new approach

is to build models only as needed, and store them in memory

(persistent storage). The framework includes a technique for

identifying models in memory that are appropriate for new

images, and for combining the predictions of multiple models

to arrive at a final terrain classification.

II. PROPOSED APPROACH AND MOTIVATION

This paper focuses on the problem of reliably classifying re-

gions in the far field—outside of stereo range—as traversable,

non-traversable, or varying degrees in between. The core

principle of the proposed approach is to use memory. We must

leverage past experience from previous navigational tasks,

either from the current mission (A-to-B driving task), or from

a prior mission perhaps many months ago. If a robot learns

to discriminate between a tree and surrounding flat terrain by

coming within stereo range of that scenario, then it should

store this model and apply the knowledge to future tasks. The

goal is to apply prior learned knowledge to classify terrain and

identify obstacles in the far field for which we might not have

examples in the present near field to learn from.
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We identify four key challenges in storing and utilizing

multiple models:

Model Structure: What information does a model consist

of, and how can we store those models?

Model Selection: Given a new image classification task,

how do we select a tractable subset of models that are

appropriate to the image and will perform correctly?

Model Combination: Given a relevant set of models, how

do we combine their predictions to arrive at a single

classification?

Computational Efficiency: How do we select, evaluate,

and combine the outputs of multiple models in real time?

Each of these challenges is addressed as we describe our

framework for robot navigation using multiple models.

A. Model Structure

Our approach is to create large numbers of highly spe-

cialized linear models, augmented with histogram models to

determine model relevance at a given test point. In their

canonical form, a linear model in d dimensions consists of

a vector of d coefficients, plus an offset [17]:

β = 〈β1, β2, . . . , βd〉
T

, β0

The model coefficients form a separating hyperplane that

can be used to classify a d-dimensional test point x =
〈x1, x2, . . . , xd〉. The output class ŷ predicted by the linear

model at x is given by:

ŷ = sgn [β0 + β · x] = sgn

[
β0 +

d∑

i=1

βixi

]
,

where ŷ ∈ {−1, +1} .
Binary linear models for classification have two shortcom-

ings for our scenario:

Binary vs. continuous/probabilistic output: Generally,

linear binary classifiers return the signed distance

from a test point to the separating hyperplane. This is

usually binned and returned as one of two discrete class

labels (e.g., −1 or +1). Planning systems can usefully

exploit continuous traversability labelings interpreted as

representing degrees of either safeness (traversable terrain)

or lethality (obstacles). For example, not all obstacles (say,

tall thick grass) are as “lethal” as other types (wide trees).

No concept of applicability: A standard classifier will

produce an output for any input; however, it will not give

an indication as to the validity of its output. For example, a

classifier trained on images of rocks and grass will produce a

dubious result for an image of a tree trunk. Given a problem

that is known to be linearly separable, a linear model’s

output will be valid (trustworthy) if that model was trained

on data similar to the test point. We refer to this concept

as model applicability.

While techniques do exist for obtaining probabilistic outputs

from some binary classifiers such as Support Vector Machines

(SVMs) [18], these methods do not provide any notion of

model applicability for a given test point.

Our technique addresses both of the above disadvantages

by providing an indication of the relevance of model M for

a test point x using one-dimensional density estimation. This

model relevance value is used to provide both an indication of

model applicability as well as a confidence in its prediction.

The techniques for building and evaluating such a model

are detailed below. Where applicable, experimental values for

parameters used in this study are given in Table I.

B. Building a Model

1) To build a terrain classifier for an image I , we first extract

a feature image If , which creates a d-dimensional repre-

sentation of the image. Identifying the optimal features for

terrain classification is an area of active research. Here, we

use color histograms [19] which bin the color intensities

in each of the three color channels (R, G, and B) in the

neighborhood of the reference pixel. The number of bins

b (here, fixed at 5) and the “window” dimension cw × ch

(fixed at 7×7) are parameters of the color histogram feature

extraction technique. Using 3 color channels and 5 bins per

channel results in a feature image with feature depth d of

15 values (3 channels × 5 bins per channel).

2) Next, a random sample of training data consisting of n

near-field image pixels from each class (as identified by

Stereo) is selected (Sample1). The resulting d-dimensional

feature vectors (Xlrn1
) and their associated class labels

(ylrn1
) are then used to train a binary linear classifier. We

use a Linear Support Vector Machine (SVM), based on

findings in [16]. From this linear classifier, the coefficients

of the separating hyperplane (β) are extracted and stored.

Xlrn1
= If (Sample1) = 〈x1, x2, . . . , xN 〉T

ylrn1
= CLASS-OF(I(Sample1)) = 〈y1, y2, . . . , yN 〉

T

β = BUILD-LINEAR-MODEL(Xlrn1
, ylrn1

)

3) Two more random samples of training data, disjoint from

the data used to create the linear model, are extracted

from the feature image (Sample2 and Sample3). Sample2

and Sample3 are homogeneous random samples of hgnd

traversable and hobs non-traversable pixels, respectively.

(Again, the class labelings come from Stereo.)

Xlrn gnd = If (Sample2)

Xlrn obs = If (Sample3)

4) For each of the two class samples, the data is evaluated

by the linear classifier β created above, producing a vector

z of model outputs (signed continuous values representing

class and distance to the hyperplane). One vector will have

mostly positive values, while the other will have mostly

negative values reflecting the fact that the samples were

chosen from different class distributions.

zgnd = (Xlrn gnd × β) + β0

zobs = (Xlrn obs × β) + β0

where z = 〈z1, z2, . . . , zN〉
T

.
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5) zgnd and zobs are each used to build a histogram model

(Hgnd and Hobs). Each model bins the distances to the

hyperplane; this can be thought of as the one-dimensional

estimate of the density of hyperplane distance for a single

class. During evaluation, this density estimate will pro-

vide a quantitative measurement for how “close” a test

point x is to training data associated with that particular

SVM/histogram model M.

Hgnd = BUILD-HISTOGRAM-MODEL(zgnd)

Hobs = BUILD-HISTOGRAM-MODEL(zobs)

The final model M created for an input image I is therefore

composed of a linear model (β), a histogram model for

groundplane data (Hgnd), and a histogram model for obstacle

data (Hobs):

M(I) = 〈β,Hgnd,Hobs〉

Note that a model M can be constructed for every image I.

C. Evaluating a Test Point

For each new image the system must evaluate our appear-

ance based classifiers for possibly thousands of unlabeled

pixels. Classification in our framework involves selecting

models from memory, evaluating those models, and combining

each model’s output to produce a “final” classification. The

procedure is outlined below.

1) For each input image compute the color histogram feature

image If . If has N d-dimensional “pixels” which form the

test data matrix Xtst.

Xtst = If = COLOR-HIST(IRGB)

2) K models are selected to form the subset S (see Sec-

tion II-D), including SVM models β and two histogram

models Hgnd and Hobs. Hyperplane coefficients for the K
models form the K × d matrix βall and K × 1 vector β0.

3) The entire N×d feature image data matrix (Xtst) is then

evaluated through all K linear models to produce an N×K

matrix of model outputs, Zall.

Zall = (Xtst × βall) + β0 = 〈z1, z2, . . . , zK〉 , z ∈ R
N

4) The outputs from each linear model (zi) are then passed

through each pair of histogram models and evaluated. This

results in two N×K matrices of values on [0, 1], which rep-

resent the confidence that test points belong to groundplane

(traversable terrain) or obstacle (non-traversable terrain).

Pall gnd = EVAL-HIST-MODELS(Hall gnd, Zall)

Pall obs = EVAL-HIST-MODELS(Hall obs, Zall)

where Pall ∗ = 〈p1, p2, . . . , pK〉 , p ∈ R
N

5) Finally, the two sets of outputs Pall gnd and Pall obs are

combined to create a final classification (see Section II-E).

pcombined gnd = COMBINE-MODELS(Pall gnd)

pcombined obs = COMBINE-MODELS(Pall obs)

where pcombined ∗ = 〈p1, p2, . . . , pN 〉
T

The resulting two vectors of combined probability estimates

pcombined gnd and pcombined obs represent the final confidence

for each pixel in I belonging to the respective class. This

is the final output of the evaluation algorithm. The planning

subsystem on the robot uses these two vectors to update the

cost map.

Having two confidence values on [0, 1]—one for each

class—allows us to subtract the values in pcombined gnd from

those in pcombined obs yielding a new vector q of continuous

values on the interval [−1, 1], which can also be discretized:

q = pcombined obs − pcombined gnd

qbinned =

{
+1, where q ≥ 0
−1, where q < 0

Thus we can represent the final synthesis of our evaluation of

model M on a set of N test points Xtst by a single N-element

vector q of values on [−1, 1].

M(Xtst) = q

We can quantify the accuracy of this output directly by

comparing it to ytst which contains the class labels (−1 and

+1) for Xtst. While standard binary accuracy can be calculated

using qbinned, using the continuous values in unbinned q

suggests a new performance metric which we call continuous

classification accuracy. Generally, the model receives a higher

score at a test point x the more confident (i.e., closer to −1 or

+1) it is on a correct prediction; similarly, it is penalized to

a greater degree for a higher confidence incorrect prediction.

This more general calculation is given by |yi + qi|/2 and has

the property of returning the same result when evaluating

qbinned against ytst as does the standard binary accuracy

calculation using qbinned. We use this continuous accuracy

when scoring models for selection (see Section II-D).

The subtraction operation used to produce q has some

elegant properties. For example, if both histogram models

predict an identical value, say, 0.8, then the final output q

is 0, implying full uncertainty. This is appropriate, since the

models are in conflict. The same applies to the case where

neither model is confident and both histograms return a value

of 0. The strongest result occurs when one histogram outputs

0, while the other outputs 1; this will result in value for q

of −1 (full confidence, groundplane) or +1 (full confidence,

obstacle).

A rendering of q appears in Fig. 1. Color (either green or

red) represents terrain prediction (groundplane or obstacle),

while intensity indicates classification confidence at that pixel.

Accordingly, darker areas in the image represent areas where

the model is uncertain, with black representing full uncertainty.

D. Model Selection

In general, we aim to maintain a large memory composed

of hundreds (if not thousands) of models. Each model can be

thought of as providing a specialized capability to discriminate

between groundplane regions (safe, traversable areas) and

obstacles (areas the robot should avoid). Not all models in

memory will be relevant to the current image, and some may
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even be detrimental to the overall classification of I. For ex-

ample, some of the models in memory may have been trained

on desert terrain, while the current mission traverses wooded

terrain. Moreover, although there may be many models in

memory appropriate for the image, there simply may not be

time to evaluate them all. Model selection therefore becomes

a critical question.

Generally, we want pick the best subset of models possible,

where “best” means the subset S of K models that will result

in the best navigational performance. Given some value for K,

how do we choose S?

We propose to choose S by first scoring each model on

the image I, then ranking each model by score, and from this

ranking, selecting the top K models. This implies that all M

models in memory are evaluated in some manner with respect

to I. In our approach, this evaluation occurs on the set of near-

field stereo data T for which we have labels (and for which we

can calculate model error). Since M can grow quite large, and

T can contain tens of thousands of points, evaluation of each

model M in memory on the entire set T is computationally

prohibitive (see Section II-F). We therefore select a subset

of L stereo data points called TL. L can scale up or down

as computational requirements demand. Naturally there is a

tradeoff between the value for L and the quality of the estimate

of the score for M on I. Note that this estimate (ScoreM(TL))
comes from near-field labels only; an area for future work is

to incorporate some prediction of far-field performance in this

score.

Calculating the score for M on TL is an ongoing area of

research. Our current technique is to use the mean continuous

classification accuracy (see Section II-C) of M on TL:

ScoreM(TL) =
1

L

L∑

i=1

|yi + qi|

2

where TL = 〈Xtst, ytst〉, qi = M(xi),
Xtst = 〈x1, x2, . . . , xL〉

T
, and ytst = 〈y1, y2, . . . , yL〉

T
.

E. Model Combination

Given a test point x and a subset S containing K models

selected from memory, how do we arrive at a final classifica-

tion for x that considers each model’s output? Combining the

outputs from multiple models is also a current area of research.

We have devised an initial basic technique, described below.

As described above Pall gnd and Pall obs are constructed

during model evaluation. Here, we consider only Pall gnd for

clarity. We wish to combine the K model outputs for each

point into a single value, such that we end up with a final

condensed N-element column vector pcombined gnd.
The best mechanism for combination is still to be deter-

mined. Our current mechanism is to take the simple (un-

weighted) average over the values in each row in Pall gnd,

thus giving each model equal weight in the final output. As a

special case, we do not include values of 0 in the mean, since

0 is a special value in the histogram evaluation that indicates

the model was not trained on data similar to x and is therefore

TABLE I
SUMMARY OF PARAMETERS AND THEIR VALUES IN THIS STUDY

Param Definition Study Value

M Total number of models in memory 100

K Number of models to be selected (variable)

d Dimension of feature vector 15

N Number of test points in an image 320×240

L Number of test points in stereo subset 100

n Num. training ex./class for linear model 100

b Num. bins/channel for color histogram 5

cw , ch Width, height of color hist. window 7×7

hgnd , hobs Num. histogram training examples All remaining

not applicable. The divisor in the mean operation (nominally

K) is adjusted to reflect the number of pruned values of 0 and

is called Kp.

pcombined =
1

Kp

Kp∑

i=1

pi, pi 6= 0

Possible alternative approaches involve combining model

outputs by taking the maximum value over the K outputs

(i.e., the most confident model dominates), or combining the

outputs using weights from a log-odds function [20] such that

models with extremely high or low confidence outputs will

dominate. Another option could involve taking the weighted

mean where the weights are the actual scores from each of

the K models, or using weights derived from some notion

of temporal relevance (e.g., the most recent models could be

weighted more heavily than older models). A final idea would

involve keeping a running score for each model, with weights

based on each model’s overall historical usefulness.

F. Computational Efficiency

Robot navigation is done in real time, and must be achieved

within the constraints of the robot’s limited onboard compu-

tational ability. A general sketch of computational demands

of our approach follows. (Values used in this study for the

parameters referenced below are listed in Table I.)

Evaluating N d-dimensional test points through a linear

model is N×d multiplications. Evaluating K such linear mod-

els is therefore K×N×d multiplications. Evaluation of the N-

element vector z (output by the linear model) through a single

histogram model takes O(N ) time. Training an SVM model

is classically an O(n3) procedure; faster methods are available

for linear kernel SVMs [21] although LIBSVM (used in this

study) makes no such optimizations.

Model selection introduces further computational demands.

In the proposed technique, all M models in memory are

evaluated on a small subset of stereo data TL containing L

test points; this requires M×L×d multiplications for the linear

model evaluation and an additional 2×M×L operations to

evaluate all L points through both histograms for each model.

Combining models using the proposed method typically in-

volves N mean calculations over K values each, an O(NK)

operation.
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G. Summary of Parameters and Symbols

Our approach incorporates a number of tunable parame-

ters whose values have implications for both computational

demands and the ultimate navigational performance of the

robot. A challenging area of research is to find a principled

method for optimizing the values for the parameters listed in

Table I such that the robot’s navigational performance is maxi-

mized while still staying within some real-time frames/second

performance requirement. Table I summarizes the tunable

parameters in our approach and their fixed values used in

the experiments for this paper. The values listed, when fixed,

have been hand-chosen based on past experience with their

performance characteristics.

III. EXPERIMENTAL DESIGN

A. Research Objectives

Our experiment design is driven by the following questions:

• Does the memory-oriented multiple model approach pro-

posed here outperform baseline techniques, e.g., using

SVM on a one-model-per-image basis?

• Is our method for selecting models effective?

• How does the performance of our multiple model tech-

nique vary with the number of models selected? How

many models should we use?

Note that for this study, we do not experimentally vary

the model combination method. Informal testing has shown

that the model combination technique outlined previously

(Section II-E) performs adequately; this is an area for future

research.

B. Experimental Approach

To answer these questions, an experimental framework was

developed. The following points are central to this framework:

Real data: Experiments are to be performed on image

sequences taken from outdoor scenarios using standard

hardware found on existing robot platforms.

Varied datasets: Different terrains pose different prob-

lems, and a variety of terrain, seen under different lighting

conditions, is necessary to fully test any approach.

Hand-labeled “ground truth” images: To produce

meaningful performance metrics and comparisons we

require ground-truth data. In this study we evaluate the

output of our technique against test images hand-labeled

by a human, which means all parts of the image (not just

the near field) are considered in the evaluation.

Comparison to baseline techniques: There are a number

of simpler frameworks that can address model selection and

combination; we compare our proposed technique to the

performance of several of these baseline approaches.

Randomized experiments: In our approach randomness

plays a role when selecting the training data for both the

linear models and the two histogram models. There is a

further random component when selecting the subset TL

of labeled data used for scoring during model selection. In

this paper 16 randomized experiments are used to determine

average and variability of performance. Accuracy values in

this study have a typical standard deviation of 0.5–1.0% over

all randomized experiments; this variation is small enough

to where error bars are not shown graphically on the plots.

C. Baseline Techniques

The multiple model technique is compared against two

baseline techniques.

One-model-per-image SVM: For every image I, super-

vised learning is used to create a linear model for that image,

using training data labeled by stereo. This model is then

used to classify the remainder of the image (including the

far field), and is discarded afterward.

One-model-per-dataset SVM: Similar in principle to

above, however, only one model is built using the first frame

from the dataset. This model is used to classify both the first

image and all remaining images in the dataset.

D. Datasets

For the experiments presented in this paper, we have ex-

tracted image frames from log files recorded during live runs

of the robot in the DARPA LAGR competition. Each dataset

consists of very different appearance and terrain, covering dif-

ferent lighting conditions (shaded, natural, and high intensity

with shadows). The terrain varies greatly, with combinations of

ground plane type (mulch vs. dirt vs. woods), foliage, natural

obstacles (trees, dense shrubs) and man-made obstacles (hay

bales).

Each dataset consists of 100-frame image sequences. Each

image was manually labeled, with each pixel being placed into

of three classes: Obstacle, Groundplane, or Unknown. If it was

difficult for a human to tell what a certain area of an image

was—even when using context—then that region was labeled

as Unknown.

The datasets and their human labelings have been made

publicly available in MATLAB format in order to encourage

further experimentation. Raw stereo disparity information is

also included to facilitate experiments with different near-field

labeling techniques. The datasets can be found online at [22].

E. Performance Quantification

Performance quantification is reported as binary classifica-

tion accuracy (1 – error). For a model (or combined model)

M evaluated on a labeled test image I consisting of N test

points (Xtst) and their associated class labelings (ytst), the

accuracy AccM of M on I is the proportion of test points in

I correctly predicted by the model:

AccM(Xtst, ytst) =
1

N

N∑

i=1

{
1, if M(xi) = yi;

0, otherwise.

where Xtst = 〈x1, x2, . . . , xN 〉
T

, and ytst =
〈y1, y2, . . . , yN 〉

T
. This calculation adapts to both the

multiple model approach (using qbinned, see Section II-C)

and the baseline approaches by binning the linear model

outputs ŷ (Section II-A).
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Fig. 2. Comparison of Model Selection Method Best-K vs. Random-K

F. Experimental Procedure

For each dataset, one model is built for each of the 100

images using the near-field stereo information associated with

that image; this results in a model store of 100 distinct mod-

els for the experiment. The single-model-per-image baseline

technique proceeds by classifying image It with the linear

model βt previously built from that image. The one-model-

per-dataset baseline technique takes the first linear model β1

(trained from the first image in the dataset, I1), and uses this

single model on the first image and all subsequent images in

the dataset.

Our multiple model technique uses the entire set of 100

prebuilt models for all images. If it chooses Mt, then the

linear model βt contained therein is the same linear model

used by the single-model-per-image technique at It. Although

having “future” information (i.e., a trained model) from image

It+1 available to help classify image It may seem unrealistic,

in practice this is exactly the scenario we design for (e.g., the

robot has previously navigated the path). The experiments are

designed to measure the multiple model technique’s ability

to leverage this past information by selecting and combining

models effectively.

All experiments were conducted in a MATLAB R2006b

environment; LIBSVM v2.83 for MATLAB [23] was used for

the linear SVM implementation.

IV. EXPERIMENTAL RESULTS

A. Effectiveness of Model Selection Technique

We compare our model selection technique Best-K (de-

scribed in Section II-D) to a random selection (Random-K).

For this experiment, trials were run for K = {1, 5, 10, 20, 40,

60, 80}.

The results are summarized graphically in Fig. 2. For

all three datasets, the best performance was achieved when

using the proposed scoring technique for selection (Best-K)

compared to the baseline random subset selection of the same

number of models (Random-K). Depending on the dataset,

for K=10 models, classification accuracy was 3–5% higher

when scoring and selecting models compared to a random

selection. This trend holds true over all datasets. Figure 2 also

illustrates that as the number of models increases, the two

scores converge. Since our model store (memory) is fixed at

100 models (one model per image), as K increases, the set

of models selected for the Best-K method intersects more and

more with the set selected for the Random-K method. As this

overlap increases, we naturally expect the performance results

to converge.

Another result demonstrated in Fig. 2 is the effectiveness of

combining models. A significant performance gain is achieved

by combining 10 or 20 models versus combining 5, and

especially compared to using 1 model (even the “best” one).

Most interesting is that there are diminishing returns with

respect to performance as the number of models increases.

In fact, combining somewhere between 10 and 20 models

produces close to maximal performance on these datasets. Our

explanation is that 10 or 20 specialized models are sufficient

to cover the problem “space”; it is likely that many models

overlap (i.e., have very similar separating hyperplanes). This

is not surprising given that many images in a sequence are

similar.

These data suggest that overall performance may be hin-

dered by forcing a selection of too many models. Experi-

mentally this behavior is observed in Dataset 2; performance

declined roughly linearly by about 5% as the number of

models selected increased past 5 (here, the optimal value)

through 80. This result suggests that forcing a selection of

the K best models may not be optimal. For example, if K

were fixed at 20, but only 5 models in memory were really

applicable, then performance might suffer as a result. An

immediate idea would be to pick models whose score falls

above some threshold T, however some frames are simply

“harder” than others for appearance-based classification and

T may need to vary accordingly. Knowing when to build a

new model vs. when to use existing models in memory is an

important area of future research.

B. Effectiveness of Multiple Model Approach

Our experiments show that for two of the three datasets

(Datasets 1 and 3), the multiple model approach performs

significantly better than the baseline (3–5% improvement in

classification accuracy). For the other dataset (Dataset 2), it

performed slightly worse (3%). These results are summarized

graphically in Figures 3 through 6. Overall numerical results

are provided in Table II.

Both qualitatively and quantitatively, Dataset 2 has some of

the most challenging terrain for appearance-based classifica-

tion due to the bright, intense lighting conditions and the heavy

presence of shadows; this dataset is particularly challenging

since shadows on the ground plane have appearance similar

to the dominant obstacle (dark shrubbery). This dataset also

has the property that there were near-field stereo examples of

most of the obstacles present in the far field, an ideal scenario

for the one-model-per-image approach. We credit this for the

baseline technique’s improved performance over the multiple

model technique (for Dataset 2).
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Fig. 3. Baselines vs. Multiple Model Method, Dataset 1
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Fig. 4. Baselines vs. Multiple Model Method, Dataset 2
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Fig. 5. Baselines vs. Multiple Model Method, Dataset 3

DS1 DS2 DS3 Overall
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Dataset

M
e
a
n
 A

c
c
u
ra

c
y
 (

%
)

 

 

SVM One Model Per Image

SVM One Model / Entire Dataset

20 Best Multiple Models

Fig. 6. Baselines vs. Multiple Model Method, Overall Performance

TABLE II
OVERALL RESULTS - MEAN CLASSIFICATION ACCURACY (%)

Method DS1 DS2 DS3 Overall

SVM - One Model Per Image 82.02 84.65 93.53 86.73

SVM - One Model Per Dataset 73.66 72.36 92.65 79.56

Best 20 Multiple Models 86.95 81.74 96.22 88.30

Mean 80.88 80.02 94.13

A related experiment involved creating a single linear SVM

model for the first image, and then using this one model for

every remaining image in the dataset. The results show that,

as expected, this does not result in strong overall classification

performance, except on frames with similar appearance to the

frame on which the model was originally built (Figs. 3, 4, and

5). This underscores the notion that each linear model is a very

specialized model and should only be used when applicable.

Figure 6 and Table II summarize the overall performance

on the three datasets involved in this study. These are mean

accuracy values over all frames, weighted by the number of

valid expert-labeled test points in each frame. Overall, our

multiple model approach performed better than the baseline

by about 1.6%, a 12% reduction in error. As expected, the

“one model per dataset” baseline method performed the worst

overall. However, that technique did perform quite well on

the early (30+) frames of each dataset, “near” to the image

on which the single model was trained. This is an important

result in that one model may be perfectly adequate for as long

as the terrain stays similar to the terrain on which the model

was trained.

V. CONCLUSIONS AND FUTURE WORK

This paper addresses the open problem of image based

navigation in unstructured environments. Stereo data in the

near field are used to learn models that use image appearance

(color or features) to classify obstacles and traversable terrain

in the far field. We propose saving and reusing learned models

over time to make the process more efficient. This model

memory is motivated by the need to classify far-field terrain
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without the need for examples of the same terrain appearing

in the near field of the same frame.

Using multiple models for classification involves challenges

in model structure, model selection, model combination, and

computational efficiency. We describe methods that address

all four of these challenges, forming a framework that can

leverage past experience (memory) stored as discrete, highly

specialized linear binary classifiers. We perform a rigorous

evaluation of this technique, comparing it to a baseline method

that involves using just one linear binary classifier learned

for each image. Based on results for hand-labeled ground

truth datasets, we conclude that overall using multiple models

results in higher classification accuracy. We also provided

experimental evidence that the proposed technique for model

selection is viable, outperforming a random selection of the

same number of models. Finally, we gain interesting insight

from experiments where the number of models selected is

varied, demonstrating that only a relatively small number of

models are needed to achieve robust classification results.

The main contribution of this paper has been to demon-

strate that multiple models learned over time are an effective

mechanism for classifying far-field terrain.

Future work will focus on improved techniques for selecting

models, in particular ways to select models with expected

high performance in the far field. Model selection methods

such as “Previous-K” which combine the models from the

K most recent frames should be evaluated. More intricate

and theoretically motivated methods for combining models

will also be explored (e.g., Bayesian Model Averaging [24]).

Experiments will be conducted using these and other general

ensemble methods. Additional baseline approaches will be

considered, e.g., voting via multiple SVM models. Future

efforts will develop well-founded techniques to determine

when to build a new model vs. when an adequate subset of

models exists in memory.

In future experiments, new datasets will be used. These will

consist of frames from the same three scenarios presented

in this paper, but each scenario will contain four distinct

sequences of images, two each from two different lighting

conditions. Further, instead of only 100 labeled frames, each

sequence will consist of 300–500 labeled frames, allowing for

concept drift to manifest more clearly. Finally, each frame in

the new datasets will be larger, with 640×480 resolution.

All datasets used in experiments in this paper are available

on the web at [22]; the additional datasets and hand-labelings

noted above will also be made available in the future.
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